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ABSTRACT
We present an implementation of meta-shaders by adapting a com-
monly known data structure to pass into shaders: planar graphs.
This allows for an arbitrary flexibility in design where the face
regions that partition a surface can be individually and uniquely
shaded, or in combinations, as desired. Considering a wide vari-
ety of systems mixing 2D and 3D across multiple industries, the
applications of meta-shaders opens up a new area of design and
user-interaction possibilities in computer graphics.
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• Computing methodologies→ Texturing; Procedural anima-
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1 INTRODUCTION
In the world of computer graphics there is a problem of rigidity
when it comes to colouring the surface of 3D geometries. Most
approaches combine formulae and involve dividing space in some
manner to create a pattern. This can limit the possibilities that an
object can be shaded both in artistic terms and as well as in pre-
cision. Another common way in which geometry is shaded is via
raster textures. While rasterized textures allow for seemingly arbi-
trary colouring, this is not the case. Raster images are composed of
pixels and if the camera moves too close to the geometry’s surface—
discontinuity between individual pixels will result. The solution
we propose in this paper will mitigate these issues of rigidity, and
discontinuity by presenting a new way to colour geometry using a
technique we call meta-shaders.

In computer science and mathematics, a well-known concept of
a graph is composed of vertices, edges, and faces. A graph has no
preset positions in 3-dimensional space, unlike a 3Dmesh. However,
by passing the data of a graph to a shader, we assign 2D positions
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Figure 1: (left) The Stanford Rabbit. (middle) Flat geometry
overtop rabbit’s profile. (right) Shader demonstrating both a
planar graph structure partly built from the flat geometry,
and binary search to colour its face regions (without the typ-
ical quadtree or other distance query structures); the graph
has cyan vertices, orange edges, and blue or red face colours.

to the vertices of the graph on the surface of a mesh. Thus, we cre-
ate colourings without discontinuities, and with endless precision.
Effectively this approximates scalar-vector graphics (SVG), with
the additional ability to perform binary search across a surface.
Furthermore, since our shader is relying on a graph structure, it is
effectively displaying meta-geometry (as opposed to mesh geome-
try). We can then apply a shader to the different face regions for
rendering. This enables artists to produce effects such as animation,
dynamically colour the face regions of the graph, and increase the
opportunities for functionality with interactivity and design.

With meta-shaders, we can update the regions to display in other
shaders conditionally. As the environment changes and interacts
with our object, we may want to move the region for real-time
effects or change the shader behaviour for a specific face, or group
of faces. With our approach, all of this and more is possible.

1.1 Requisite Knowledge
A graph 𝐺 is a set 𝑉 (𝐺) of vertices with a set 𝐸 (𝐺) of pairs of
vertices called edges such that 𝐸 (𝐺) ⊆

{
{𝑢, 𝑣} |𝑢, 𝑣 ∈ 𝑉 and 𝑢 ≠ 𝑣

}
.

Vertices are called adjacent if an edge connects them. A graph is
considered planar if there exists at least one placement of vertices
(called a drawing) in the plane such that no edges are crossing. A
drawing of a graph on some surface with no crossing edges is called
an embedding. As such, a drawing of a graph on the plane with no
crossing edges is called a planar embedding. The regions bounded
by edges in a planar embedding are called faces, but we use the
term region to avoid confusion with mesh geometry.

As an important note, if a graph is planar—that is, the graph can
be drawn on the plane with no crossing edges—then that graph can
be drawn on any surface with no crossing edges.

1.2 Embeddings of Planar Graphs
A cyclic ordering of the adjacencies in each vertex’s adjacency list
for a graph defines what is called a combinatorial embedding. We
are able to check which surface a graph embeds by visiting the
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vertices in the order of a face-walk. A face-walk consists of visiting
vertices in sequence based on the cyclic ordering of adjacencies
[Boyer and Myrvold 1999] managed by a record data structure
for each side of an edge used to walk. Using face-walking with
records is a simpler approach to implement checking whether the
embedding of a graph is planar. Then further methods can be used
to obtain a drawing.

Tutte embedding is one of the first well-known efficient methods
to draw a planar graph with straight-line edges between vertices
[Tutte 1963], which uses Barycentric coordinates and requires a
face of the graph to have preset positions which form the boundary
of a convex polygon.

There exist a large number of algorithms for embedding a planar
graph, but many are complex and have trade-offs between difficulty
in implementation and the utility of the result. Currently, our pro-
totype system relies on the user to design the connections to place
the vertices in locations that make it an embedding without edges
crossing. Some ways to expedite the design is to import an object
file from Blender and edit further in Unity 3D. We will explore
implementations of algorithmic embedding in the future that help
automate the design of a planar graph further.

1.3 Related Work
Groups and Graphs [Kocay 2007] was software developed to embed
graphs on surfaces such as the torus and Klein bottle with visu-
alizations that aided reading cyclic adjacency orders. This mainly
supported mathematicians with research of combinatorial embed-
dings on such surfaces.

A fundamental way to make location queries on a 2D surface
is with quadtrees [Samet 1984]. Quadtrees can be implemented
efficiently using binary interleaving [Redis 2022], but only to a
resolution of cells—or, square regions—where the area of queries
have some radial limit based on the combined area together with
neighbouring regions.

Visualization of graphs do not necessarily have to be planar, and
open source web development libraries—such as D3 [Bostock et al.
2011]—provide tools for fast interactive 2D display of large graphs
in browsers.

Applications and systems mixing 2D and 3D benefit from poten-
tially more intuitive ways of user-interaction, such as converting
sketch-like input to quickly mock-up architectural designs [Olivier
et al. 2019]. The open source community benefits greatly from
Blender’s suite of tools, with Grease Pencil having a thoroughly
developed and robust set of features that generates flat geometry
to display strokes, among other effects [Leung and Lara 2015].

But we have found little in the way of development of shaders
that display SVG, although we have seen plenty of demonstrations
of geometric shapes displayed using surface-distance functions,
which are known to be costly for the iterations involved with step-
ping through space to form their shapes.

2 DYNAMIC UNWRAPPING
2.1 The Goal
We construct a system such that regions of a planar embedding can
be mapped to nearly any polygonal shape regardless of complexity

𝐿𝐻𝑆 𝑅𝐻𝑆

𝑝

Case 1

𝐿𝐻𝑆 𝑅𝐻𝑆

𝑝

Case 2

𝐿𝐻𝑆 𝑅𝐻𝑆

𝑝

Case 3

Figure 2: The three possible cases for edges intersecting
strips.

to effectively partition a surface. Further, the regions of the embed-
ding can be rendered separately with different shaders using only
logarithmic time binary search per fragment to find which region
a pixel resides.

2.2 Process
The basis of our approach depends on creating vertical “strips” of
the plane surface for each vertex in the graph. The data for these
strips is passed via texture to the shader. The texture can then have
binary search lookups depending on any point on the plane to find
which region that point belongs to. The advantage of using vertical
strips is that there is a clear order to each of the vertices by the
𝑥-coordinate. Vertices with the same 𝑥-coordinate belong to the
same strip. This will let us sort the vertices accordingly in which we
can logarithmically find the two vertical lines 𝐿1 and 𝐿2 between
which the point lies. Thus the face for which this point is on must
cross some non-empty subset of this space bounded by 𝐿1 and 𝐿2.

The core assumption that will let us determine a region of the
planar embedding is as follows. For closest pairs of vertices, say
𝑣1 and 𝑣2 positioned at points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) on the plane,
respectively, it must be that for {𝑣1, 𝑣2} ∈ 𝐸 (𝐺) and 𝑥1 < 𝑥2, no
other vertex to the right of 𝑥1 has 𝑥-coordinate less than 𝑥2. Thus,
it cannot be the case that a vertex of an edge passing through strip
between the vertical lines 𝑥 = 𝑥1 (LHS) and 𝑥 = 𝑥2 (RHS) can
contain another vertex inside this region. Thus, an edge has one of
three possible ways to intersect a vertical strip:

(1) Passes through both lines:
• neither endpoint vertices lie on either vertical line.

(2) Passes through one of the vertical lines only:
• a vertex lies on one of the vertical lines.

(3) Passes through neither lines:
• an endpoint on LHS and the other on RHS.
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𝐿𝐻𝑆 𝑅𝐻𝑆

𝑝

Case 2

𝐿𝐻𝑆 𝑅𝐻𝑆

𝑝

Case 3

Figure 3: The three cases for an edge’s interaction with the
strip. Cases 2 and 3 partition the strip by either having both
vertices completely above the pixel (Case 2) or by having one
vertex above and the other below. These cases are equivalent
to the cases when mirrored vertically so that the LHS vertex
is below the pixel. Case 1 does not partition the strip.

We add four vertices to the graph, one vertex to each corner of
the plane surface so that vertical strips cover the entire surface.
Altogether, the collection of vertical strips for the entire surface
allow us to binary search which strip a fragment sits.

Further, once we know the specific strip, we can binary search
within the strip vertically by distance above each edge in the strip,
since the edges of the graph in a strip partition the strip, except for
the perfectly vertical edges along a strip’s LHS. Once the vertical
section is located for a fragment, we must perform a check to
determinewhich of the three closest edges in the strip at that section
should be used to determine the correct region of the embedding.

3 IMPLEMENTATION
3.1 Vertical Strip Construction
In Algorithm 1 we construct the vertical strips needed for binary
search in our meta-shader.

3.2 CPU Runtime
The outermost loop iterates over each strip to collect the edges that
intersect the strip.

There is a possibility for there to be, at worst—all edges inter-
secting all vertical strips—which results in a quadratic runtime.
This could be avoided by building strips in some other partitioning
scheme, such as building them to be horizontal instead, or to be
radial from any desired point. Depending on the graph desired, one
could choose a strip building strategy to keep the runtime close to
linear w.r.t. the number of edges.

Note that to keep the runtime linear, we take advantage of fast
copying of the immediately previous strip just built to the left

ALGORITHM 1: We construct the vertical strips for binary search
to query regions for the input plane embedding for graph𝐺 .

Input: A graph𝐺 (𝑉 , 𝐸 ) with adjacency lists giving 𝐸 such that the
clockwise ordering of neighbours in the adjacency lists
determine the embedding of𝐺 in the plane combinatorially.

Output: A collection of edge lists named strips, each list
corresponding to one vertical strip, where the edges for
each list are sorted in vertical ascending order.

1 Sort all vertices’ 𝑥-values ascending, ignoring repeated values;
2 𝑆 ← number of unique 𝑥-values;
3 Create an array of 𝑆 lists strips;
4 Add all adjacencies of vertices with x-value 0 to strips[0];
5 (this completes the leftmost vertical strip);
6 for 𝑖 ← 0 to 𝑆 − 1 do
7 copy strips[i] to strips[i+1];
8 for each adjacency 𝑒 = {𝑢, 𝑣} in strips[i] do

// 𝑣 is righthand endpoint of adjacency

9 if 𝑣 has 𝑥-value <= 𝑥-value of LHS for strips[i+1] then
10 remove 𝑒 from strips[i+1];
11 end
12 end
13 𝑘 ← number of vertices that lie on the LHS of strips[i+1] with

the same 𝑥-value;
14 for each vertex 𝑢 counted to get 𝑘 do
15 for each edge 𝑒 incident on 𝑢 in the graph do
16 if 𝑒 lay on top of or angled to the right of the LHS of

strips[i+1] then
17 Add 𝑒 to strips[i+1] while maintaining clockwise

ordering of adjacencies for 𝑢;
18 end
19 end
20 end
21 Replace vertical successive edges (no other edges in strips[i+1]

between them) with one vertical edge;
22 end
23 for 𝑖 ← 0 to 𝑆 do
24 Sort the adjacencies of strips[i] ascending in 𝑦-value where

each edge crosses the LHS of strip for strips[i+1];
25 end
26 Pass strips to shader;

Table 1: Early Prototype testing for our real-timemeta-shader
graphs.

Count

Vertices 117
Edges 200
Vertical Strips 116

FPS 100

provided by C# List, instead of copying element by element, of
course.

4 PERFORMANCE EVALUATION
Testing for our meta-shaders.

3
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5 FUTUREWORK
5.1 Adaptations and Optimizations
Graphs in graphics are already ubiquitous asmesh geometry. RXMesh
splits the geometry of meshes using algorithms of graphs as a data
structure to aid optimizations for work on GPUs[Mahmoud et al.
2021].

[Tran and Cambria 2018] surveyed graph algorithms that take ad-
vantage of parallelization of GPUs. Contemporarywork by [Jaiganesh
and Burtscher 2018] improves efficiency to find connected compo-
nents of graphs using GPU.

A survey of the prior work optimizing the rendering and use of
meshes could be gleaned for possible performance increases in our
system.

With procedural generation of the vertices and edges of a graph,
the geometry of a mesh could be tessellated in real-time with the
user making design decisions. Generating this way would avoid
storing meshes with a large amount of data and save storage mem-
ory.

This work is in its early stages. As such there is much do be done
to refine and optimize this process. Other restrictions or assump-
tions may lead to further improvements on our design and produce
more optimal algorithms. Naturally, young research like this will
produce new problems to overcome and many other research op-
portunities in the field.

5.2 Possible Applications
There are a large number of possible applications to consider across
many industries, and we continue to search for more in a broad
survey through the literatures. Three main application directions
up to the time of writing we see as being feasible:

• meta-shader for flexibility in combining shaders
– interactive and infinite-zoom SVG approximation on

the surface of objects
• vector graphics features and interactivity on surfaces for

3D design tools
• as a data structure for managing location queries within

regions

5.3 Meta-Shaders
So many tools have blazed the forefront of what is possible with
generating 3D content through interactive mixes of 2D and 3D. A
survey done by [Bhattacharjee and Chaudhuri 2020] lays out much
comparison between them. We see such a wide variety of possible
applications of our work that there are plenty of opportunities for
advancements.

Because the system we are developing approaches the design
of textures in a different way from anything listed so far, there
is also opportunity for unique applications that tend to be purely
developed as research within the entertainment industry, such as
those described in [Mlynarčíková 2020]: 2D mixed with heavily
stylized 3D for Spider-man: Into the Spider-verse.

The most straightforward application of meta-shaders is to com-
binewith other shaders, say powerful designmethods demonstrated
by [Thonat et al. 2021] for tesselation-free displacement mapping,
that could be used along with any other shader in any arrangement

of face regions. We specifically cite this displacement technique
as meta-shaders can be used on very low-poly surfaces where the
design is moved to the face regions partitioning the surface, as
opposed to relying on complex mesh geometry.

Another use is to provide interactivity and animation of the
graph’s regions in real-time. We have not seen examples of similar
functionality of graphs in shaders.

5.4 Scalar Vector Graphics
To a more extreme set of possible uses, consider the fashion tech-
nology industry. Many interactive design applications have been
compared in [Rizkiah et al. 2020]. There is no example currently
that we can find for use of scalar-vector graphics in any of these
applications. We are sure expert designers of fabrics and garments
would find use for similar tools as those found in vector-graphics
software, but on the surface of 3D models. Planar graphs can ap-
proximate SVG, and be regenerated given the distance of a camera
to the surface of a 3D model to effectively provide infinite-level
detail in textures.

Finally, while we read the work of [Leake et al. 2021], we were
reminded of Ada Lovelace, who foresaw computer applications
involving visualization and was inspired by the punch-cards of
automated looms. [Leake et al. 2021] pulled inspiration from quilt-
ing for research that analyzed properties of paper-pieceable-quilt
tile patterns, which partially correspond to planar graphs. It is an
example of niche areas of design that could potentially benefit from
our techniques.

5.5 Data Structures
Many have used various data structures for managing location
queries in a 2D or 3D scene, such as quadtrees and octrees, as well
as others such as bounded volume hierarchies (BVHs), or improve-
ments on these that use bitwise interleaving to avoid the need to
take up memory with the same advantages of hashing into the data
structure faster than traversing directly from the root to the desired
child node.

There is much more flexibility to design any regions in 2D using
an embedded graph in the plane. The advantage of planar graphs is
that they have a rich plethora of algorithms crafted by mathematics
and computer science researchers for many possible applications.

For example, if one only needs collision detection directly sur-
rounding a large object, one large region set up with a polygon
and adjacent regions surrounding it of any design could provide
various adjustments to the typical data structures used for collision
detection. Visiting the edges along the boundary of a region allows
one to also visit the neighbouring regions.
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